Pso-based Dbscan with Obstacle Constraints Xiaoning
نویسندگان
چکیده
This paper presents a new PSO-based optimization DBSCAN space clustering algorithm with obstacle constraints. The algorithm introduces obstacle model and simplifies two-dimensional coordinates of the cluster object coding to one-dimensional, then uses the PSO algorithm to obtain the shortest path and minimum obstacle distance. At the last stage, this paper fulfills spatial clustering based on obstacle distance. Theoretical analysis and experimental results show that the algorithm can get high-quality clustering result of space constraints with more reasonable and accurate quality.
منابع مشابه
Density-Based Clustering with Geographical Background Constraints Using a Semantic Expression Model
A semantics-based method for density-based clustering with constraints imposed by geographical background knowledge is proposed. In this paper, we apply an ontological approach to the DBSCAN (Density-Based Geospatial Clustering of Applications with Noise) algorithm in the form of knowledge representation for constraint clustering. When used in the process of clustering geographic information, s...
متن کاملObstacle Avoidance of mobile robot using PSO based Neuro Fuzzy Technique
Navigation and obstacle avoidance are very important issues for the successful use of an autonomous mobile robot. To allow the robot to move between its current and final configurations without any collision within the surrounding environment, motion planning needs much treatment. Thus to generate collision free path it should have proper motion planning as well as obstacle avoidance scheme. Th...
متن کاملA PSO-based algorithm designed for a swarm of mobile robots
This paper presents an algorithm called augmented Lagrangian particle swarm optimization with velocity limits (VL-ALPSO). It uses a particle swarm optimization (PSO) based algorithm to optimize the motion planning for swarm mobile robots. Considering problems with engineering constraints and obstacles in the environment, the algorithm combines the method of augmented Lagrangian multipliers and ...
متن کاملCanonical PSO Based K-Means Clustering Approach for Real Datasets
"Clustering" the significance and application of this technique is spread over various fields. Clustering is an unsupervised process in data mining, that is why the proper evaluation of the results and measuring the compactness and separability of the clusters are important issues. The procedure of evaluating the results of a clustering algorithm is known as cluster validity measure. Different ...
متن کاملMultiple Route Generation Using Simulated Niche Based Particle Swarm Optimization
This research presents an optimization technique for multiple routes generation using simulated niche based particle swarm optimization for dynamic online route planning, optimization of the routes and proved to be an effective technique. It effectively deals with route planning in dynamic and unknown environments cluttered with obstacles and objects. A simulated niche based particle swarm opti...
متن کامل